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Modeling Robot Flexibility for Endpoint Force Control
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Abstract

Dynamic models have been developed in an attempt to match the response of a robot arm. The
* experimental data show rigid-body and five resonant modes. The frequency response and pole-zero

arrays for various models of structural flexibility are compared with the data to evaluate the

., . characteristics of the models, and to provide insight into the nature of the flexibility in the robot. Certain
models are better able to depict transmission flexibility while others describe types of structural

flexibility.
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Introduction

Manipulation tasks, such as mechanical assembly and surface following involve interaction

between the robot and its environment. In these cases, we feed back the resulting contact forces in hopes

of improving performance. Compliant control schemes have been proposed by Raibert and Craig [6].

Salisbury [7], Whitney [9], and others. See Whitney's overview [10] for a more complete listing. These

methods allow the use of signals from a wrist-mounted force sensor to be used in the closed-loop control

of the robot joints.

While the prospect of using the sensed force to improve endpoint force command tracking and to

yield better disturbance rejection seems quite reasonable, in practice, closed-loop force control has

extremely limited bandwidth. Since it is the use of the sensed force information that gives rise to the

stability problems in an otherwise stable system, we should investigate the differences between joint

position control and endpoint force control.

* Joint position control involves joint position commands and measured joint position feedback. The

closed-loop bandwidth is generally limited only to the open-loop crossover of the modeled system.

Specificaily. the performance can be predicted by modeling the compensator. actuator, and rigid links.

(An example of such a model is presented here in the section entitled "Rigid-Body Dynamics".) With the

1.- joint feedback at the actuator itself, the unmode led dynamnics in the vansmission and links become less

important.

Endpoint force control, on the other hand, involves joint force commands and measured endpoint

force feedback. The closed-loop bandwidth is generally only a small fraction of the open-loop crossover

of the modeled system. In fact, measured performance does not approach that predicted by modeling the

compensator, actuator, and rigid links. Since the force feedback is now at the endpoint rather than at the

p actuator, the unmodeled dynamics in the transmission and links become vitally important.

* A good model demonstrates the difference between joint position control and endpoint force

control. Previous work [3] has shown the effects of limited actuator bandwidth and of structural

flexibility. The term colocated control is used to describe the joint position control scheme above, since

the sensors used for feedback are located at the same points on the flexible structure as the actuators used.

* In the endpoint force control scheme. however, the sensors are at the robot lip, while the actuators are at

the joints. The sensors are separated from the actuators by flexible transmissions and flexible links. This

is termed nwncolocated control [51.

The goal of this research is to develop suitable models of robot flexibility, with the aim of better

.1P7 understanding the causes of instability and improving the closed-loop bandwidth of endpoint force

control. A ceries of lumped-mass models was previously developed [2] to show that robot flexibility

No
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Figure 1: Robot Joint Position Control and Endpoint Force Control

gives rise to force control stability problems, since this is a noncolocated scheme. However, lumped-

mass models are not always appropriate, as will be shown here. This paper begins with some
experimental robot frequency response data. The limitation of rigid-body models is shown, and then

various models of structural flexibility are investigated. Finally, it is concluded that each of the models

may be useful to depict the dynamics of a certain type of robot flexibility, and just which model is best for
"-" -:a given robot depends upon the nature of the flexible elements involved.
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Experimental Robot Dynamics

As an example to consider throughout this paper, we will consider the dynamics of the MIT

Cartesian Assembly Robot, designed and built at the MIT Artificial Intelligence Laboratory. The

czartesian gantry-type structure is typical of a large class of robots. While this configuration is different

from that of jointed arms, the models developed here may be applied to both types.

The experiment conducted to determine the frequency response of one of the axes is shown in

F~zure 2. The hardware used includes: a Hewlett-Packard structural dynamics analyzer; the robot's

.Automatix amplifier and Aerotech motor; the X-axis of the robot structure; and a Bruel & Kjaer

a, elerometer and charge amplifier. The open-loop transfer function desired is from the amplifier's

,, elocity command input (which is normally the digital controller's output) to the tip motion. The input

dviven to the amplifier was band-limited white noise generated by the HP analyzer. The output measured

was tip acceleration of the robot X-axis tested. The analyzer compares the frequency components of the

input and output signals, and calculates a transfer function for plotting.

-(',.

•motor robot

. , .. analyzer

U.NNoooo . 'A cha rge • accelerometer

Figure 2: Robot Test Setup

%The transfer function for the X-axis is shown in Figure 3 as measured in the experiment described.

The dominant structural modes appear to be roughly at 11, 38, 44, 67, and 77 Hz. We would like to

develop a dynamic model of this frequency response which can be used in the design of a superior force

control scheme.
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Rigid-Body D% namics

Before attempting to understand the nature of the flexible modes of the robot, we should

investigate the theoretical rigid-body behavior. It is this response which limits even the joint position

control closed-loop bandwidth. The term rigid-body refers to the robot axis modeling only. This model

must still include the significant compensator, amplifier, and motor dynamics.

A sketch of the rigid-body dynamic model is shown in Figure 4. The input to this model is the

velocity-command voltage given to the preamplifier (this signal usually comes from the digital

controller). The preamplifier includes analog tachometer feedback and a gain. The power amplifier is

configured as a current (transconductance) amplifier, which is simply a voltage amplifier with sensed

current feedback. The power amplifier is actually a pulse-width modulated device with sufficiently high

switching frequency that it can be modeled as a linear amplifier. The current feedback comes from the

coupled motor model. (Note that modeling the power amplifier simply as a current amplifier would, by

causality, force us to ignore the motor dynamics.) The motor input is its terminal voltage. The motor

electrical characteristics are constant inductance and resistance, a torque constant, and back EMF. The

motor torque output is then proportional to the current. The transmission ratio (ball screw pitch) converts

motor torque to force on the axis rigid-body. The robot effective mass to consider here is the total

moving mass of the robot, plus the reflected inertias of the rotor and screw. We also include some

. -' . viscous damping to ground, but no stiffness to ground, since the axis can be positioned anywhere by the

actuator. Finally, the rest of the feedback loops are closed, with the velocity again passing through the

transmission to get the motor speed.

amplifier motor transmission robot axis

' I 1' Ii

5 I

L _ [ _=L _ _L

Figure 4: Rigid-Body Robot Model

Along with the flexibility, the many nonlinearities present in the actual system are also neglected

in this model. The most significant of these nonlinearities are amplifier saturation and bearing friction.

These effects are considered in the simulation used for the controller design.

* + The transfer function for the linear rigid-body model is then. from amplifier input to tip velocity

"~ output:

S%

* *, -.
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GV ip (S )  
kappr eamp rtransk

JS) (mfS+beff)rr(Ls+R+kak )+ k(kampkpreampktach+kbak*)

We have a second-order transfer function which becomes third order when endpoint position is made the

output by adding a free integrator. To compare the frequency response with the experimental data,
however, we must add a differentiator instead, to yield tip acceleration, which was measured.

G 4 (s ) = s G rb ( s ) = - _ _ _ _ _ _

V.a(s)

The rigid-body model response is shown in Figure 5. We have depicted the overall magnitude and

phase response of the robot without its structural dynamics. We now seek a model of the structural
* resonances.
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Figure 5: Rigid-Body Model Acceleration
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Polynomial Resonance Model
* " Since the structural resonances are well within the range of interest, we need to model these

dynamics also. A simple model of these dynamics can be obtained by constructing a polynomial transfer

function to represent the resonances in the transfer function which was obtained by test. The fitted

polynomial function, when cascaded with the rigid-body model derived, should match both the magnitude

and phase of the experimental transfer function.

We will attempt to match the first five dominant modes in the data. Moreover, we propose to do so

by cascading five simple resonance transfer functions, each of which has the following form:

"1 q1

R)(s ) -s+

Each simple resonance transfer function includes a pair of poles and a pair of zeros only. Each is also

scaled to have essentially no effect on the response at o < min[owpi, w ,i].

*: The overall transfer function that should match the data is then

5G P(s) = Wf XS

" where GI (s) is the rigid-body model transfer function of tip acceleration output to velocity command

input.

The matching of the data takes place as follows:

For each resonance to be matched, starting with the lowest frequency:
1. Compare I GP,(jw) I with the experimental transfer function magnitude plot.

2. Find the peak corresponding to the resonance, and set (oPi to the peak frequency.

3. Find the trough corresponding to the resonance, and set w:i to the trough frequency.
(Typically, ao . = 1. 1 opi for structural modes.)

* 4. Choose Pi to match the height of the peak. (Typically, ;Pi = .05 for structural
modes.)

5. Choose :j to match the depth of the trough. (Typically, ,:j = .05 for structural
modes.)

Note that this method uses the magnitude plots only, and we construct a transfer function to match

these. The phase plots should match also. if the data to be matched actually represent a minimum-phase

sv-tem. Figure 6 shows the frequency response of the polynomial resonance model, which can be

compared to the experimental response data in Figure 3.

0 -Since the resonance model is made up by cascading the simple resonance transfer functions with

the rigid-body model, its pole-zero array includes the two poles of the rigid-body model, the zero at the
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Figure 6: Polynomial Fit to the Experimental Data.

.- origin which results from choice of acceleration output, and the five pairs of poles and five pairs of zeros

of the fitted-polynomial resonance model. This pole-zero array is shown in Figure 7.
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-1000-

Figure 7: Pole-Zero Array of the Polynomial Resonance Model.



Lurnped-lass Models

The fitted-polynomial resonance model provides an excellent match to the actual system response.

however, it lacks the ability to lend physical insight into the behavior exhibited. To improve this

situation, we would like to develop a model of the robot structural flexibility which has some physical

relevance to the actual hardware.

We first investigate adding flexibility to the rigid-body model discussed earlier. Consider a model

!- of the robot axis which includes flexibility between the actuator and the tip. Figure 8a shows the robot

represented by two masses coupled with a spring. This flexible element might depict a transmission

compliance or the flexure of a structural element between the actuator and the tip. This configuration

attempts to mciel one mode of vibration in the robot. To depict the first five modes, we would need

more vibrating masses.

Consider the substitution of a lumped-mass model, with five springs and six masses in series.

Figure 8b, whose resonant frequencies mat( A the first five resonant modes of the robot data. Previous

* ~work [2] has analyzed lumped-mass models of this type to show that for each mode of vibration modeled

between the actuator and endpoint, two poles are added while only one zero is added in the actuator-to-

endpoint transfer function. However inspection of the experimentally-obtained robot transfer function

implies that the correct model of the robot flexibility include two zeros for each pair of poles added. The

frequency response of this lumped-mass model cannot possibly match the data, since the transfer function

has too few zeros!

We now consider adding the resonant dynamics elsewhere in the lumped-mass model.

- -.Specifically, suppose that the actuator and tip are still dynamically colocated on the flexible structure, but

there exist flexible elements on the supporting side of the actuator (in the .obot base, or frame). Figure 8c

shows this configuration. The transfer function from force input to motor (or tip) output velocity now has

* two zeros and three poles. So two poles and two zeros have now been added to the original rigid-body

lumped-mass model by the base dynamics.

This is a plausible model for a class of robot flexibility; however, it results in only colocated

transfer functions. That is, it does not address the difference between joint position control and endpoint

force control.

r.5
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Bending Beam Models

In search of models of structural flexibility which allow transfer functions to be derived for outputs

at various points on the structure, and also allow resonant modes to be added one at a time, we attempt to
,', model a cantilever beam in bending. We model the beam in bending for two reasons: first, the lumped-

mass models considered above seem to be discrete models of beams in axial loading

(tension/compression), and they failed to properly represent the robot structural modes; and second, the

robot structural modes actually look like they are comprised of mostly bending.

Figure 9 shows the distributed-parameter beam robot model. We consider the cantilever beamshown with a sliding constraint at one end and free at the other end. At the sliding end, we apply the

actuator force and measure the actuator motion. At the free end, we measure the tip displacement.

,Vact Vtip

p, E, I, A, I

Figure 9: Distributed-Parameter Beam Robot Model

Derivation of equations of motion for such a beam is fairly simple, however, we desire transfer

functions. Vaughan [8] has developed a method for the derivation of such transfer functions, although he
does not present this particular set of end conditions. Using his procedure, however, we can derive the
following relations representing the colocated (actuator) and noncolocated (tip) transfer functions for the

sliding-free beam shown.
V a(s) -' (S2+C2)2+2S 2+2C 2+1

,Vla(s) _.2P+S
F(S) (S2 +C2 )2 - 4CS-

Fjj(s) = 2~C(S 2+C2+l)
F~s) (S2+C2 )2-4CS-l

where S = e- TP sin

C = e-"TPcos ;Tp
* a: ,'-,p =~

El

L" " ',T = 1l2
T 12

and E. 1, p. A, and I are the beam parameters.

'., t, These transfer functions are non-polynomial, and have an infinity of poles and zeros. Nevertheless, we

N
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0

can plot their frequency response in the normal manner, by substituting s =jO. Figu-e 10 shows these
% ' frequency response plots, using (Vaughan's) sample beam parameters. ..

N4.

4.0 - -M 4.0

r_ 3.0 - 3.0

2.0 2.0

0.0 0.0
0.5 1 .0 1.5 0 0.5 1.0 1.5 2.0

-1.0 - Log Frequency z -1.0 Log Frequency (H4'1.
-2.0 -2.0

180.0 1 180.0

90.0 90.0

0. 00.5 1.0 1 20UR, Z, Lo_. Fre~en.y (I1 y

-90.0 -90.0

-180.0 -180.0
%"

Colocated TF Noncolocated TF

Figure 10: Bode Plots for the Distributed-Parameter Beam Model

Now, to investigate the suitability of this type of beam model to our robot data, we consider the

poles and zeros of these transfer functions. While we cannot explicitly solve for the poles and zeros as

the roots of the numerator and denominator polynomials of the transfer functions, we can still find the
poles and zeros as the points in the s-plane at which the transfer function becomes infinite or zero,

respectively. In fact, by doing so, we can construct polynomial approximations to these transfer functions

which are valid up to any frequency. Shown in Figure 11 are the pole-zero arrays for the colocated and

noncolocated transfer functions of the beam. These polynomial transfer functions match the response of

the real beam transfer functions perfectly through the 5 th modes. The colocated beam transfer function

has poles and zeros in alternating pairs along the jo axis. The noncolocated beam transfer function has

pairs of poles along the j03 axis (in the same locations, since the two transfer functions have the same

characteristic equation), but the zeros are spread out symmetrically along the positive and negative real

Saxes. The real zeros appear in these "pairs" so as to contribute no net phase shift. (Without these zeros,

A . ... . ,, " .,.. .
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Re 0 0 Re

Colocated TF Noncolocated TF
*Figure 11: Colocated and Noncolocated Pole-Zero Arrays for the

Distributed-Parameter Beam Model

the magnitude response drops off much too fast, and does not match at all.)

The nonminimum phase zeros which appear in the noncolocated transfer function of the
- distributed-parameter beam robot model are an interesting finding. Similar non-minimum phase

properties have been reported by Cannon and Schmitz in their very flexible beam structure [1). They are

curious because they do not appear in any of the lumped-mass models derived above. Is this because the

distributed-parameter beam model uses distributed parameters instead of lumped? Or is modeling the

bending instead of the tension/compression the significant difference which gives rise to the nonminimum

zeros?

We hypothesize that the right-half plane zeros come from the bending effects and not the

distributed nature of the model. However, to find out for sure, we derive transfer functions for a lumped-

parameter bending-beam model shown in Figure 12. This model is a limited form of the lumped-

parameter Timoshenko beam. Here the left-end mass slides, while the right-end mass is free to rotate and

translate, as in the distributed-parameter model discussed above.

The equations of motion for this model can be derived and we can solve for the transfer functions
0 from the input force to various outputs. We will describe two such transfer functions, whose pole-zero

arrays are shown in Figure 13. The colocated transfer function, from the force input to the position

output, XCt, is minimum phase. The noncolocated transfer function, from the force input to the position

output, xtip, is noaninimum phase. In fact, this noncolocated transfer function also has a "pair" of real
0zeros at equal frequencies on the positive and negative real axes.

0
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Figure 13: Colocated and Noncolocated Pole-Zero Arrays for the

Lumped -Parameter Beam Model

The appearance of the nonmninimum phase zeros in the noncolocated transfer functions of both of

the bending-beam models again leads us to dismiss these models, since the right-half plane zeros do not

appear in the experimental data. The polynomial fit to the experimental data showed pairs of poles and

zeros lining up just to the left of the 10) axis. The distributed-parameter beam model's colocated transfer

'p function has the right numbers of poles and zeros for each mode and the correct arrangement thereof in

the s-plane. While this model looks promising, it does not predict any instability for endpoint force

control that would not be present for joint position control.
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Discussion

,_. We have shown experimental data representing the trequency response of a robot used in our

laboratory. We then developed a series of models in an attempt to understand these data.

The rigid-body robot model is capable of matching the overall frequency response, with the

exception of the resonances. This model considers only the amplifier, motor, and effective rigid-body

mass of the arm.

The polynomial resonance model matched the robot frequency response quite well, including the
.1 first five major resonant modes. This model consists of the rigid-body model, cascaded with two poles

and two zeros for each flexible mode. Despite the superior match, this mathematical model bears no

physical significance with regard to the actual system.

The lumped-mass models have been analyzed previously, and are well understood. When used to

depict flexibility between the actuator and tip. these models add for each resonance a pair of poles, and
-, only one zero to the rigid-body model's actuator-to-endpoint transfer functions. When used to describe

flexure of the robot base or frame, these models add two zeros with each pair of poles. The former of

these configurations is unable to match the data, while the latter lacks the ability to provide both colocated

and noncolocated transfer functions.

The distributed-parameter beam model showed a striking difference between the pole-zero

a:"rays of its colocated and noncolocated transfer functions. Specifically, the colocated transfer function
.i.bs poles and zeros alternating along the./o axis, while the noncolocated transfer function has the same

poles, with its zeros spread out along the positive and negative real axes. The presence of these

nonm-inimum phase zeros explains why at high gain the noncolocated control becomes unstable.

The lumped-parameter beam model showed the same nonminimum phase characteristics as its

distributed-parameter counterpart. We conclude that the bending modes have significantly different

* dynamic behavior than axial vibrations in beams.

"* The two striking observations about these modeling efforts are:

* Only the polynomial resonance model matched the experimental data well. If a high-

bandwidth model is requi:ed, this method yields an excellent result, although it provides little

or no physical insight.

" It is possible for a tip sensor and joint actuator to be physically noncolocated, but
dynamically colocated. That is, while they are separated by flexible elements on the robot

structure, for some finite bandwidth, they "move together". The sensor response is equal in

.* phase to the actuator input throughout a given frequency range. Above this bandwidth they
yl I
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may be dynamically noncolocated.

We can divide the sources of robot flexibility into three categories: W7
1. base flexure

2. transmission compliance

3. link flexure
The transmission compliance is the simplest to model. We would suggest an appropriately chosen

lumped-mass model. Base or link flexibility is likely to more closely resemble beam(s) in bending rather
than beam(s) in tension or compression, and the lumped masses in series are a discrete approximation to a

beam under axial loading. We therefore recommend a beam model for the base or link flexibility. Even a
lumped-mass model of a beam in bending displays nonminimum phase zeros at frequencies equal to the

minimum phase zeros that appear. Finally, base and link flexure differ significantly in that base flexure
allows the joint actuators and tip sensors to remain dynamically colocated, while link flexure may not.

4I
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